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Abstract— Task-oriented grasping of unfamiliar objects is a
necessary skill for robots in dynamic in-home environments.
Inspired by the human capability to grasp such objects through
intuition about their shape and structure, we present a novel
zero-shot grasping method leveraging a geometric decomposi-
tion of the target object into simple, convex shapes that we
represent in a graph structure, including geometric attributes
and spatial relationships. Our approach employs minimal
essential information – the object’s name and the intended task
– to facilitate zero-shot task-oriented grasping. We utilize the
commonsense reasoning capabilities of large language models
to dynamically assign semantic meaning to each decomposed
part and subsequently reason over the utility of each part for
the intended task. Through extensive experiments on a real-
world robotics platform, we demonstrate that our grasping
approach’s decomposition and reasoning pipeline is capable of
selecting the correct part in 92% of the cases and successfully
grasping the object in 82% of the tasks we evaluate. Additional
videos, experiments, code, and data are available on our project
website: https://shapegrasp.github.io/.

I. INTRODUCTION

In-home environments present a significant challenge for
real-world robotics, primarily due to their highly unstructured
nature. As a result, these environments frequently contain
novel objects not present in the robot’s training environment;
however, interacting with such objects, particularly grasping
them in a task-dependent manner, is a necessary skill.
Grasping an object in a way that facilitates a certain task,
namely task-oriented grasping, requires a system to not only
detect an object but also to reason over the utility of its
parts. For example, when picking up a hammer with the
goal to “hand it over” (see Fig. 2, left), it should be grasped
by the head to facilitate a safe handover. Large Language
Models (LLMs) provide the capability of such commonsense
reasoning and can be utilized for task-oriented grasping with
only a minimal set of contextual information, namely the
object’s name and desired task [1], [2]. However, zero-shot
task-oriented grasping remains challenging, particularly since
current approaches are computationally expensive and may
require additional information beyond the object’s name and
intended task for high performance, such as desired object
part names [1], [2], thus limiting their zero-shot performance.

In this work, we propose ShapeGrasp, a robust grasping
framework based on a geometric decomposition of the
target object and shape-based semantic part reasoning
leveraging LLMs, capable of conducting task-oriented
grasping of novel objects. This approach is inspired by the

All authors are with the Robotics Institute, Carnegie Mellon Univer-
sity. {swli, sarthakb, jacampbe, yaqix, woojunk,
sycara, sstepput}@andrew.cmu.edu

2D Pipeline 3D Pipeline

RGB

Mask

Segmentation

(Segment Anything)

Heuristic Selection of Decomposition

Decomposition

(CoACD)

Geometric DecompositionOur Contribution: Shape Based Inference

Semantic Part Identification (LLM)

Task-Oriented Part Selection (LLM)

Prompt + Graph + Parts + Prompt = Grasp

Prompt + Graph = Parts

Selected Shape

RGB-D Camera

Inferred Grasp Point

RGB

Point Cloud

2D Decomposition 3D Decomposition

RGB Depth

Mask

Prompt

Prompt Prompt

Nodes

Attributes

Fig. 1: The ShapeGrasp Pipeline: Given a target object,
our RGB+D-based approach decomposes the object into
basic convex parts. We propose a heuristic approach to
decide which decomposition to use before converting it into
a shape graph, allowing an LLM to utilize its commonsense
reasoning to identify part semantics and task suitability.

human ability to interact with a novel object by analyzing
its geometric composition, relating it to prior knowledge,
and inferring each part’s utility [3] before utilizing this
knowledge to identify a suitable part for an intended task.
Unlike prior approaches, we introduce a multi-step reason-
ing approach that leverages a graph of basic shapes that
compose the object and a multi-stage LLM prompt that
a) assigns semantic meaning to each part of the object
given its name and b) reasons over the task utility of each
part to select the most suitable part for the specific task.
Figure 1 provides a high-level overview of the function-

ality proposed in ShapeGrasp. Starting with a passive
monocular RGB+D image, we segment the target object
using a pre-trained Segment Anything Model (SAM) [4],
receiving a 2D mask image and the object’s relevant point
cloud by applying the mask to the depth image. We then
calculate two approximate convex decompositions using a
pre-trained CoACD [5]: 1) a 3D decomposition using the
masked point cloud and 2) a 2D decomposition using the
image’s SAM mask. ShapeGrasp heuristically identifies
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Fig. 2: Different resulting grasps given our shape-based inference pipeline. Parts in orange-boldface are ultimately grasped.
Green circles and blue lines represent the part-graph decomposition with each entity’s associated attributes.

a suitable object decomposition, approximates each convex
hull with a basic geometric shape, including a combination
of rectangles, circles, triangles, and ellipses, and represents
these parts and their spatial relationships as a graph. We then
utilize an LLM to determine the semantic meaning of each
shape given the name of the object and identify a suitable
part to grasp using the assigned fine-grained semantic part
labels and desired task. Through this process, inspired by the
Chain of Thought [6] approach, we improve the reasoning
capabilities of our method. Finally, the object is grasped at
the identified part by calculating the centroid and principle
components of its masked point cloud to determine the
grasping location and orientation. Our work provides the
following contributions:

• We introduce ShapeGrasp – a novel approach for zero-
shot task-oriented grasping leveraging an object decom-
position by creating a graph of basic geometric shapes,
allowing for improved reasoning over each part’s task-
oriented utility.

• Our proposed method is a lightweight approach in
both the graph construction stage and reasoning stage,
compared to other zero-shot grasping methods, utilizing
only basic information and a single RGB+D image.

• Through extensive experiments on a robot platform, we
demonstrate that our proposed approach outperforms
current state-of-the-art methods methods.

II. RELATED WORKS

Robotic grasping [7] aims to determine the best way to
grasp objects and conventionally includes two approaches:
the analytical approach [8], [9] and the data-driven ap-
proach [10], [11], [12]. The analytical approach aims to
identify an appropriate grasp pose through analytic models
that consider geometric conditions. For instance, [9] analyzes
the geometry of the point cloud and identifies the appropriate
grasping points based on a set of geometric conditions. Prior
works have shown that understanding geometric information
dramatically benefits robotic grasping [8], [9], as well as
tasks including 3D geometry reasoning [13] and building
synthetic tools [14]; however, these approaches require the
availability of 3D geometry, which is very computationally
expensive, and are sensitive to noise, thereby, restricting their
applicability in real-world environments. On the other hand,
the data-driven approach [10], [11], [12], [15] train models
to predict grasp points. Prior works propose end-to-end grasp
detection networks for partial, noisy point clouds [11], [12]

and for leveraging semantic information [10] in a supervised
manner. In addition, techniques based on leveraging a se-
mantic knowledge graph [16], shape segmentation techniques
[17], and a physics simulator [18] have been considered.
These approaches are limited in their ability to generalize to
unseen objects due to requiring computationally expensive
training.

Besides the approaches mentioned above, LLMs and
VLMs have recently been successfully utilized in robotics
grasping tasks due to their reasoning ability [19], [2], [20],
[21]. Closest to our work is LERF-TOGO [2], which utilizes
a vision-language model in a zero-shot fashion to output
a distribution of potential grasping points given a natural
language query indicating the object as well as the part-
name that should be grasped. Specifically, LERF-TOGO
reconstructs a 3D object mask based on DINO embeddings
[22] and then uses it to generate grasping points via language
models with conditional LERF [23]. While LERF-TOGO
requires detailed natural language queries containing the
object and part name, as well as several views of the scenes
to reconstruct the 3D mask, our approach, ShapeGrasp,
is able to generate grasping points with minimal semantic
information about the object, based solely on a single RGBD
top-down view of the scene. This is achieved by decompos-
ing the object into a graph containing geometric shapes, their
spatial relationships, and attributes, before using the graph as
a prompt for an LLM. Thus, our approach leverages the ad-
vantages of the analytic approach—understanding geometric
information [24]—and the large models-based approach—
the zero-shot reasoning ability [25], which have been shown
to be effective.

LLMs and VLMs have successfully been applied to the
robotics domain [26], [27], [28], including task-oriented
grasping [2], [29]. In such context, LLMs have been inte-
grated into planning procedures in various ways, such as
providing semantic knowledge [26] and performing complex
reasoning in the form of an inner monologue [28]. In ad-
dition, [27] leverages the zero-shot reasoning capabilities of
VLMs for the pick-and-drop task requiring object detection,
navigation, and grasping. Despite the benefits of utilizing
LLMs and VLMs, which include no need for additional
training and providing common-sense reasoning capability,
naive utilization of LLMs and VLMs still have limitations
stemming from their inherent shortcomings, such as indeci-
siveness, lack of domain knowledge, hallucination, and the
black-box problem [30]. To address these limitations and en-



hance reasoning, we infuse LLMs with structured knowledge
in the form of symbolic graphs that capture the geometry,
such as the shape of the object, and the relationships between
different parts of the object. This infusion has been shown
to be effective in preventing LLMs from deviating into the
realm of fictitious information, thereby ensuring a connection
to factual data [24], [31], [30], [32], thus enhanced reasoning
capabilities for task-oriented grasping.

III. SHAPE-BASED GRASPING

In this section, we introduce ShapeGrasp, our approach
to zero-shot task-oriented grasping of novel objects by lever-
aging a graph of basic geometric shapes that compose the
object. Given an RGB+D input image I ∈ RH×W×C , our
approach g, θ = fSG(I) estimates a grasp location g ∈ R3

and rotation θ ∈ R1 for the robot to pick up the object.
The function fSG(. . . ) represents our modular grasping

pipeline, ShapeGrasp, composed of the following modules:
First, we introduce our approach to segmenting and retrieving
convex decompositions of the target object (see Sec. III-A)
by using a pipeline of pre-trained models. Then, we discuss
our first contribution, selecting a suitable decomposition
through an automatic heuristic (see Sec. III-B). Finally, we
introduce our novel approach to reasoning over the geometric
composition of the target object by using a graph-based
representation of the object decomposition and utilizing an
LLM for the reasoning process (see Sec. III-C).

A. Segmenting the Object

In this section, we introduce our image-processing pipeline
utilizing SAM [4] to retrieve an object mask and CoACD [5]
to generate a convex decomposition of the object.

1) Retrieving the Object Mask and Point Cloud: To obtain
the segmentation mask for input image I , we utilize user
input defining a set of “in-points” on the target object, used
by Segment Anything Model (SAM) to retrieve the object’s
full 2D segmentation mask M . Following this step, in-points
are discarded, and a point cloud P of the object is retrieved
utilizing the mask and depth information in our input image
I . We posit that the particular method for retrieving such
object masks is not central to our overall approach and can
be facilitated by various alternative approaches.

2) Convex Decomposition with CoACD: Given an object
mask M and point-cloud P , we independently retrieve
a convex decomposition for each of the two inputs. To
this end, we utilize CoACD, which is a recent approach
for the convex decomposition of 3D meshes, specifically
designed to retain fine-grained object features, which are
important to preserving the original functionality, particularly
in interactive settings. To utilize this approach, we convert the
2D mask M into a 3D mesh by interpreting it as a plane and
retrieving a mesh from point cloud P through voxelization.
The depth data utilized in the 3D pipeline allows for more
intricate decomposition with CoACD, uncovering features at
various elevations within the object that might be overlooked
by the 2D method. However, simultaneously, 2D decompo-
sitions provide a fast approximation that can be beneficial,

The 'blue sunglasses' object can be decomposed into its main components based on the 

nodes' attributes. 'rect0', with its rectangle shape, gray color, and high aspect ratio, 

likely represents one of the sunglasses' arms, given its elongated form and typical color. 

'rect1', being navy and having an even higher aspect ratio, could represent the other arm 

of the sunglasses, with its color matching the 'blue' description of the sunglasses. 'ellip2' 

and 'ellip3', both ellipses with gray color and lower aspect ratios, are likely the left and 

right lenses of the sunglasses, respectively. Their shapes and connections to what are 

presumed to be the arms ('rect0' and 'rect1') support this interpretation, as lenses are 

typically connected to the frame or arms of sunglasses.

You are given an object 'blue sunglasses' viewed from the top down, decomposed into 

convex parts each represented as a node in a graph, and task 'wear the blue sunglasses'. 

These nodes have attributes including shape, aspect ratio (defined as the length of the 

long axis over the short axis), color, and area. Edges in the graph represent physical 

connections between these parts within the object.

Consider the main semantic and geometric parts the object may be decomposed into. 

Reason individually over all nodes in the graph about what semantic part each node may 

represent. Be succinct, give only a short one sentence explanation for each node.

For the task of 'wear the blue sunglasses', gripping one of the 'sunglasses arms' (either 

'rect0' or 'rect1') is most appropriate. These parts offer a stable grip without risking 

damage to the lenses ('ellip2' and 'ellip3'), which are more critical for the sunglasses' 

function and more prone to damage. 'rect0' and 'rect1' are designed to be durable and 

are typically handled when putting on sunglasses, making either a safe and effective 

choice for the robot hand.

Assign a semantic part to each node.

Imagine you are a robot hand and tasked to 'wear the blue sunglasses' in a proper and safe 

manner by selecting a part that gives you appropriate control of the object/part of interest. 

Reason about how likely each node is the correct part for the gripper to interact with. Be 

succinct, give only a short one sentence explanation for each node.

Assign a likelihood to each node for the task.

Nodes of the graph:

[ ('rect0', {'shape': 'rect', 'center': (610,155), 'area': '10cm²', 'ratio': 11, 'angle': 114, 'color': 'Gray'}), ... ]

Edges of the graph:

[ 'rect0', 'ellip3', {'length': 1}), ... ]

{"rect0": "sunglasses arm", "rect1": "sunglasses arm", "ellip2": "sunglasses lens", 

"ellip3": "sunglasses lens" }

{"rect0": 0.9, "rect1": 0.9, "ellip2": 0.05, "ellip3": 0.05}
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Fig. 3: ShapeGrasp Prompting: Given a geometric decom-
position graph, we infer a suitable grasping point through a
chain of four consecutive prompts, two for task-agnostic part
identification, and two for task reasoning. Ablations of these
prompts can be found in Tab. III.

particularly for concave objects like mugs. We compute two
separate convex decompositions, one from the 2D mask
and one from the 3D point cloud, termed C2D and C3D,
respectively, as each decomposition exhibits a set of different
desirable properties. Selecting the appropriate decomposition
depends on the object the system interacts with. In the
next section, Sec. III-B, we discuss our automated heuristic
utilized for this purpose.

B. Geometric Decomposition

In this section, we discuss the following contributions: a)
our heuristic approach to select which decomposition to use
for a particular object, and b) how we create an object-graph
G that relates shapes with each other and stores the attributes
of each part.

1) Heuristic Selection of Decomposition: With our heuris-
tic, we address the problem that certain objects (e.g., concave
mugs) are inherently unsuitable for convex decomposition,
while other objects may have little visual features or re-
flective surfaces that result in low-confidence depth maps.
To address this problem, we introduce a heuristic C∗ =
h(C2D, C3D) to choose between the two decompositions that
ultimately provides a singular decomposition C∗. Fundamen-
tally, we lower the decomposition threshold until both the
2D and 3D pipelines result in more than a single part. After



that, our heuristic h(. . . ) chooses a preferred decomposition
given the following criteria: If the 3D decomposition C3D
results in more than a set threshold of parts, ω, or if the
percentage of depth points, α, with high confidence required
to retain the 3D decomposition is too low, our heuristic
h(. . . ) chooses the 2D decomposition C2D. Formally, our
heuristic which selects between 2D and 3D decompositions
at valid thresholds can be defined as follows:

h(C2D, C3D) =

{
C3D, if |C3D| ≤ ω ∧ conf. ≥ α

C2D, otherwise.
(1)

where |C| is the number of convex parts found in the respec-
tive decomposition of the object. Section IV-A.1 provides
empirical evidence for our default γ value. With the selected
heuristic C∗, we create an object-graph G to represent the
object as a composition of multiple basic geometries.

2) Structured Object-Graph Creation: After selecting an
appropriate decomposition C∗, we project it back onto the
original input image I and create an object-graph G describ-
ing the composition of the target object. Each segmented
part is represented as a node in the graph, accompanied by
attributes for each shape derived from the segmented image.
The primary attribute is an approximating shape primitive,
chosen from an isosceles triangle, rectangle, circle, or ellipse.
To select an appropriate shape primitive, we approximate
each convex hull with a simplified polygon given a pre-
defined error threshold ε. The resulting points from this
simplification dictate the fitted shape as follows:

• Isosceles triangles are formed by modifying any three
points to equalize the leg lengths and adjust the base.

• Rectangles are formed by finding the rotated rectangle
of the minimum area enclosing part.

• Circles are identified by measuring the shape factor, or
the ratio of the part’s area to the area of the bounding
circle, with a threshold of 0.9 for circle classification.

• Ellipses are formed by fitting the part inside a rectangle
(see above) if the fit reduces errors further.

These geometric shapes allow for the determination and
inclusion of additional attributes, such as aspect ratio, cal-
culated based on the long and short sides of each shape (or
major/minor axis) and the angle of the long side, as well as
the centroid. Object color is derived by bucketing the RGB
color spectrum based on the standard 16 web colors and
selecting the most prevalent color as the node attribute. Edges
within graph G are drawn to connect nodes whose convex
parts share boundaries or intersect in the segmentation, with
the shared boundary length as an edge attribute.

C. Grasp Inference through Shape Reasoning

To select an appropriate grasping point for the object, we
propose to leverage the common-sense knowledge encoded
in the LLM across two interaction stages, inspired by the
Chain of Thought approach [6], further improving our ap-
proach’s reasoning capabilities: 1) semantic reasoning over
each shape described in the graph G and 2) selecting the most
appropriate shape that facilitates the task-oriented grasp.
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Fig. 4: Overview of the 38 objects used in our study, inspired
by the objects introduced in LERF-TOGO [2].

We leverage a prompt template, described in Fig. 3, that
depends only on the target object and desired task. To ensure
the intended output structure, we utilize TypeChat [33] in
addition to the presented prompts.

1) Semantic Part Identification: In the first stage, given
the target object name, task, and constructed graph, the
LLM is instructed to reason about the subparts of the object
described in the graph and what semantic part (e.g., “handle”
and “blade”, for a knife) each represents. To conduct this
reasoning, we first ask for an unstructured, free-form answer
in which the LLM explains its thought. As a follow-up to
this response, the LLM is tasked to assign a single semantic
part to each graph node in a structured manner.

2) Task-Oriented Part Selection: After the semantic rea-
soning is complete, the LLM is instructed to reason about
the task utility of each part, given its graph representation
and assigned semantics from the first stage. Similar to the
first stage, this is accomplished in two steps: a free-form
reasoning and explanation stage, which the LLM then uses
to assign a final task-conditioned suitability score to each
node, which determines the selected grasp.

D. Selecting a Grasp Pose

In the final step, we select the shape with the highest
predicted score. To facilitate the grasp, we calculate the
centroid of the chosen part and derive its corresponding
3D coordinates from the depth information of the input
image I . To consider rotations, we calculated the principle
components of the masked subpart in the point cloud and
grasp along the largest component.

IV. EXPERIMENTS

We evaluate our approach in real-world experiments and
demonstrate its effectiveness in grasping a diverse range
of household objects across a variety of tasks. Figure 4
presents the 38 objects from 12 different categories included
in our experiments. Section IV-A discusses our heuristic
decomposition pipeline with regards to both, the dynamic
selection of the decomposition threshold (Sec. IV-A.1), as
well as the 2D vs 3D pipelines (Sec. IV-A.2). Section IV-B
demonstrates our approach on a real-world robotic platform



and compares it against state-of-the-art baselines, as well as
additional qualitative experiments in section IV-B.1 and an
LLM ablation study in section IV-B.2. All of our experiments
are conducted with a Kinova Jaco robotic arm equipped with
a three-finger gripper, coupled with a fixed Oak-D SR passive
stereo-depth camera for RGB and depth perception.

Pipeline Configuration: In order to retrieve convex de-
compositions of sufficient quality, we empirically set the
threshold ω, deciding when to select the 2D decomposition
over the 3D decomposition to ω = 10. Additionally, we set
parameter α, defining the maximal percentage of depth points
that can exhibit low confidence, to α = 15%. While these
values have been set empirically, we note that α is not very
sensitive and does not require intricate tuning.

Dataset: We created a dataset of 38 objects covering 12
general categories of items and 49 tasks, as shown in Fig. 4,
inspired by the objects and tasks used in LERF-TOGO [2].

Metrics: To evaluate the effectiveness of our approach, we
employ three metrics: “Part Identification”, “Part Selection”,
and “Successfully Lifted”. “Part Identification” measures
the accuracy of the semantic part assignment, across all
parts globally and across only the ground truth parts. “Part
Selection” quantifies the proficiency of our model to select
the correct part for the task-oriented grasp. For this metric,
the selection is deemed correct if it aligns with ground-
truth parts based on LERF-TOGO [2]’s part queries and
common-sense human judgment with respect to the task,
safety, and stability. “Lift Success” indicates the percentage
of successfully lifted objects at the ShapeGrasp selected
part for the given task. The failure number is the number of
parts incorrectly identified during part selection, plus failed
grasps at parts that were correctly selected. For this metric,
we count a lift as failed if the “Part Selection” was incorrect
in the first stage.

A. Automatic Geometric Decomposition

1) Dynamic Threshold Selection: In both the 2D and
3D pipeline, the convex decomposition error threshold γ
is an important element that facilitates grasping success
by controlling the number of segmented object parts. This
threshold plays a pivotal role in balancing the accuracy of the
decomposition with the manageability of the resulting parts.
A high error threshold γ > 0.2 that does not over-segment
a geometrically complex object may fail to decompose a
simple object – the entire object may be approximated
as a single convex part. Conversely, a low error threshold
γ < 0.1 may decompose complex objects into overly many
parts, complicating the resulting graph and making reasoning
challenging. As shown in Figure 5, we run the pipeline at
thresholds between 0.01 and 0.35 and evaluate the number of
decomposed parts and the lifting success rate on sunglasses
and screwdriver, with the former being a more complex
object as evidenced by the consistent larger number of
resulting parts at each threshold. This experiment reveals that
any single threshold may not be sufficient to accommodate
all objects. At thresholds conducive to successful lifting for
the sunglasses, the screwdriver often fails to decompose;
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Fig. 5: Threshold analysis for 2D (top)/3D (bottom) decom-
positions on sunglasses (complex) and screwdriver (simple).

naively taking the centroid of the entire object as the grasp
point is inherently unsafe and does not allow room for
reasoning, which we consider a failure case. While the error
threshold may easily be set and tuned in our pipeline by a
user, our heuristic fully automates the inference process.

Our pipeline provides a generalizable zero-shot approach
for grasping by balancing object complexities and geome-
tries. Therefore, we propose the selection algorithm de-
scribed in Section III-B that considers the number of decom-
posed parts to set an object-specific threshold γ. An initial
threshold is set at γ = 0.2 for 3D meshes and γ = 0.15
for 2D meshes. The error allowance for 3D objects should
naturally be higher to accommodate potential noise in the
depth perception. These thresholds are set conservatively and
tend to under-decompose objects. To address this, we itera-
tively decrease the threshold by 0.025 for each object until
a valid decomposition is achieved (an object is decomposed
into two or more parts). For example, a valid decomposition
and successful lift are achieved within 2 − 3 iterations for
the screwdriver, while the initial threshold is satisfactory for
sunglasses. We further find that in our experiments, high
thresholds that do not decompose an object execute in less
than a second, making this search both efficient and effective.

2) 2D vs 3D Decompositions: After setting decomposi-
tion thresholds, the choice between the 2D and 3D pipelines
for the final decomposition from which to build the graph
is a critical step. As discussed in Section III-B, the heuristic
algorithm we employ uses the depth confidence and number
of decomposed parts (too many parts may indicate noisy
or concave surfaces) to facilitate this choice. Table I shows
the “Part Selection” performance across all object-task pairs
between the 2D, 3D, and heuristic that selects between them,
each of which uses the optimal threshold search. An inter-
esting observation is that while our heuristic selection does
indeed result in the best performance (92%), the 2D pipeline
exhibits stronger performance (86%) than the 3D pipeline
(83%). While this may be initially counterintuitive, this result
demonstrates and is consistent with the conclusion that the
flexibility of our pipeline allows us to dynamically adapt
to settings where depth information may be inconsistent,
low quality, or incompatible with the convex decomposition
method. In our real-world experiments, we utilize an Oak-
D SR passive depth camera, which provides high-quality



Model (using GPT-4) Part Selection

1 ShapeGrasp (2D only) 0.86
2 ShapeGrasp (3D only) 0.73

3 ShapeGrasp (Heuristic, no obj) 0.51
4 ShapeGrasp (Heuristic) 0.92

TABLE I: Part selection accuracy on different variants of
ShapeGrasp. We evaluate 2D-only, 3D-only, and heuristic
decompositions. For the heuristic, we also explore a “no obj”
variant that omits the object name from the prompt and task.

Model Part ID Part Sel. Success Time

1 GraspGPT [20] N/A 0.37 0.31 150
2 GPT4-Vision [34] N/A 0.82 0.73 20

3 ShapeGrasp (Starling) 0.54 (0.63) 0.65 0.57 25
4 ShapeGrasp (GPT-4) 0.84 (0.90) 0.92 0.82 30

TABLE II: Results on ShapeGrasp compared to
GraspGPT and GPT4-V baselines. Part ID is the semantic
“Part Identification” accuracy across all parts (and across
only the ground truth parts), Part Sel. is the “Part Selection”
accuracy, “Success” is the robot’s “Lift Success” for the task-
oriented grasp, and “Time” is the typical inference time in
seconds of each method.

depth estimates in well-lit environments on matte objects
with noticeable elevated features–the same features we may
care to segment for grasping– however, results deteriorate
with concave, reflective, and transparent surfaces, where the
2D pipeline excels due to the sole reliance on RGB data.
The prevalent noise in real-world settings often necessitates
a reliance on 2D decomposition for accuracy and robustness
via the depth confidence threshold, while still leveraging
depth data in the 3D pipeline when it is confident and useful.

The threshold search, coupled with the automatic selection
between the 2D and 3D pipelines, forms an algorithm that
determines decomposition outputs that are reasonable and
suitable for grasping.

B. Zero-Shot Task-Oriented Grasping

For real-world task-oriented grasping experiments, we pair
the ShapeGrasp pipeline with a Kinova Jaco arm designed
to grasp and lift objects at the selected part (see Table II).
This setup employs a straightforward method for selecting
grasp poses, drawing directly from the attributes defined in
our symbolic object part graph and masked point cloud (see
III-C), with the goal of executing a top-down grasp.

We employ two baselines to evaluate the efficacy of our
proposed approach, ShapeGrasp on the “Part Selection”
and “Lift Success” metrics: GraspGPT [20], which is a
current state-of-the-art approach for zero-shot task-oriented
grasping and GPT4-V [34], a foundation model trained with
internet-scale data with visual input modality, prompted with
language instructions to select the correct task-oriented part.

Our empirical findings indicate a significant performance
advantage of our method over GraspGPT [20], underscoring
the efficacy of our structured, symbolic object part graph

in conjunction with LLM reasoning. The performance gain
using our pipeline over GraspGPT [20] is 55% and 51%
(see rows 1 and 4 in Table II) for the “Part Selection” and
“Lift Success” metrics, respectively. We further analyze the
discrepancy between ShapeGrasp and GraspGPT results.
With respect to GraspGPT results, we note that it depends
on GraspNet [29], and certain objects may be inaccurate or
fail in the grasp sampling stage when the depth quality is
noisy or poor, which may occur due to our static monocular
depth camera. GraspGPT is also limited to tasks and objects
related to previously known concepts from their training set.
ShapeGrasp demonstrates robustness to the same noisy
static depth inputs, while featuring zero-shot performance
that is more lightweight than GraspGPT (see runtime num-
bers in Table II).

An important hypothesis that motivates our vision pipeline
that constructs the symbolic object graph is that directly
processing object part features and spatial relationships, and
providing this information in a structured way for LLM rea-
soning, is more robust and performant than relying on VLMs
for end-to-end reasoning. Though VLMs are considerably
larger and more expensive models, performance on low-level
features and relationships within parts of an object image
may be unreliable and subject to hallucinations [35].

To test this hypothesis and directly compare our vision
and reasoning pipeline to a VLM, we established a privileged
GPT4-Vision baseline that benefits from the same object seg-
mentations generated by the heuristic decomposition pipeline
and skipping the graph-based reasoning stages (contributing
to the faster runtime). This baseline is grounded by coloring
each part and assigning an integer index label for clarity.
We confirm GPT4-Vision’s capability to interpret segmented
and grounded input images through a series of questions
and human-verified responses. Grasp poses for the GPT4-
Vision selected parts are determined in the same manner as
a selected part to ensure comparability. Our method shows
significant success rate gains over GPT4-Vision, by 10% and
9% on the evaluation metrics (see Tab. II).

We further test the modularity of ShapeGrasp by evalu-
ating the full pipeline using Starling [36], a much smaller and
more efficient open-source LLM, as the inference backend
instead of GPT-4. Performance across all metrics, while
lower than the larger and more powerful GPT-4, remains
meaningful and higher than the GraspGPT [20] baseline, and
also demonstrate the coupling between the “Part Identifica-
tion” and “Part Selection” results.

1) Qualitative Results: The flexibility and generalizabil-
ity of ShapeGrasp and LLM shape-inference allow us
to explore more complex interactions that may be further
enhanced by the incorporation of additional object and robot
attributes. For example, Fig. 2 shows how LLM semantic
reasoning over our shape graph enables effective execution
of the “hand over” task. As the LLM understands which
node in the graph corresponds to the handles in objects,
it can prioritize that part for the human in the “handover”
interaction. Additional attributes can also be incorporated
and reasoned over in an object-specific way; while both the



Result with 
3 ≤ X < 6:

Neck (3 cm)

Result with 
6 ≤ X:

Body (6 cm)

You are a three-fingered gripper with max width X cm. Pick up the wine bottle. 

Fig. 6: ShapeGrasp results incorporating width attributes
and variable gripper width constraints.

“mug” and the “soldering iron” are given the attribute of
being “hot”, the task-oriented reasoning stage is able to make
the common-sense inference that the level of heat and risk
exhibited by these two objects differ dramatically. For the
handover task, while the mug is grasped by the hot body,
which “minimizes the risk of spilling hot liquid and ensures
a comfortable handover”, the soldering iron is still grasped
by the handle, which “positions the hot tip away from both
the robot and the human” (see Fig. 2).

Fig. 6 demonstrates how the task-oriented selection stage
is also able to consider robot attributes. Here, a “width”
attribute is added to the shape graph, along with a variable
maximum gripper width. While the robot prefers to “pick
up the wine bottle” by the bottle body, when the maximum
gripper width becomes less than the body width, it switches
to the narrower neck, maintaining a successful grasp.

2) LLM Ablations: To validate the efficacy of our model
and the comprehensiveness of the LLM interaction stages, we
conducted an ablation study with a focus on the “Part Se-
lection” evaluation metric, as detailed in Table III. Applying
the previously described decomposition selection algorithm
utilizing both the 2D and 3D pipelines, we examine the
impact of each LLM reasoning stage: the semantic parts
reasoning stage and task-oriented parts reasoning stage that
comes before the final task score assignments. We evaluate
the results using neither reasoning stage (LLM directly
assigns only task scores), only one reasoning stage, and the
full reasoning procedure.

The ablation study indicates that the most effective per-
formance is achieved when both part and task reasoning
stages are employed in the LLM interaction (92%). The
part identification stage is empirically the more important
of the two stages, leading to a performance of (87%). This
stage is likely important because when employed, the LLM’s
final selection is forced to depend on its own semantic part
identification. Intuitively, the semantics of a part are essential
in determining its affordances and suitability for a task. This
argument is further supported by the accuracy in the part
identification stage (see Table II), 84% globally, and 90%
across the ground truth parts. These numbers lead to an
important observation: not every part in an object, or even
the ground-truth part, needs to be correctly identified; it may
be sufficient if even a single critical part to either grasp or

Task Reasoning Part Identification Part Selection

1 0.43

2 ✓ 0.57
3 ✓ 0.84

4 ✓ ✓ 0.92

TABLE III: Ablation study on the LLM reasoning within
ShapeGrasp. While a part to grasp is always produced,
seasoning can be done without identifying parts and/or
without reasoning over the task. See Fig. 3 for detailed
prompt information.

avoid is correctly identified. For example, in a pair of blue
sunglasses, the ground truth part “arm” was misidentified
as the “frame”, but the “lens”–which is critical to avoid–was
correctly identified. As such, the task-oriented selection stage
correctly avoided the “lens” segment. Put in another way,
the quality of the automatic geometric decomposition and
the accuracy of the parts reasoning stage effectively provides
another novelty: semantic part segmentation, which naturally
should be coupled with task-oriented part selection.

The task reasoning demonstrates a notable performance
gain as well (57%) over the no-reasoning result (43%); this
may indicate that even once semantics are assigned, explicit
task-conditioned reasoning is still beneficial, especially as a
single object may have numerous appropriate uses and tasks.

In Table I, we also explore the performance when the
target object name is withheld. This leads to a significant
performance drop (51%), likely due to the challenge of
assigning semantic parts to an unknown object. In this
setting, the assigned semantics may not be meaningful, with
the final results largely determined by geometric attributes;
however, reasoning while not having any semantic object
knowledge may be an interesting avenue for future work.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we present ShapeGrasp, a novel approach
that reasons over an object’s geometric composition of basic
shapes to find a suitable semantic part and associated grasp
pose that facilitates a particular task. Our novelty, namely
the representation of the object as a graph of basic geo-
metric shapes, allows an LLM to effectively reason over
the semantic utility of object parts and ultimately select the
most suitable part given a desired task. Through extensive
experiments on real-world hardware, we demonstrated that
our approach can efficiently utilize a single, static RGB+D
camera image for zero-shot grasping of novel objects and
outperform current state-of-the-art approaches.

We recognize that the synergy of convex part decompo-
sition and the LLM’s ability to assign semantic meaning to
each segment is a powerful feature of our method while,
at the same time, introducing a dependency on a “reason-
able” decomposition. While we mitigate this dependency
through the introduction of our heuristic by automatically
tuning the decomposition pipeline, further integration into
alternative decomposition methods may further improve our



pipeline. In future work, we will investigate the utility of
our approach with even less information, particularly when
no semantic information about the object is provided (initial
results in Tab. I, “no obj”), which may be enough to infer
an object’s utility given only its decomposed parts. Such
improved reasoning could be facilitated by elevating our
shape-based decompositions into the third dimension and
utilizing 3D-geometries. Further, we will investigate different
LLM prompting approaches to further improve the model’s
reasoning capabilities.
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