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1 Motivation

Sample efficiency and generalization are persistent challenges in reinforcement
learning and robotics. In particular, exploration in large state spaces from scratch
is a poor approach, especially in settings of sparse reward. The robot can behave
randomly without picking up any reward signals and get stuck in places with no
value, or take prohibitively long to converge. Furthermore, in the real-world set-
ting, exploration without constraints or strong initialization from high-level guid-
ance can be unsafe and lead to inappropriate or undesirable behaviors. Random
exploration of the environment is not how humans learn to interact with novel
objects in new places. Based on an understanding of the functions that objects
afford and how they should be interacted with, humans can efficiently and effec-
tively identify interesting or useful objects [1, 2] to learn how they may behave or
figure out how to manipulate them to achieve a goal. Our motivation is to bring this
ability to robot learning by leveraging affordance understanding and open-world
knowledge in large models, which can provide strong initialization for exploration
and learning. Additionally, while existing segmentation models are capable of seg-
menting objects, they are not able to segment object parts, in particular articulated
parts that possess the desired affordance in an object. For example, a faucet can
only be turned on by manipulating its handle. We thus also explore how the coarse
regions segmented from high-level affordance-based guidance can be further re-
fined through online interaction to identify fine-grained useful object parts.

2 Prior Work

We mainly focused on two previous works. [1] learns an image-based affordance
model using self-supervised labels from video of human interaction. This af-
fordance representation can then be directly transferred to downstream tasks
through various learning paradigms. While the learned affordance map is effective
in guiding the agent towards locations with high rewards, learning the affordance
requires a large number of demonstration videos. Since many tasks involve an
object to be manipulated by the agent, directly guiding the robot to explore and
learn the affordance map within proximity of the target object may increase the
sample efficiency and will not need demonstrations.
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[2] maps human actions learned from internet videos to robot action representa-
tion and achieves zero-shot generalization on manipulation tasks such as opening
cabinets. The effective mapping of human actions to robot action representations
shows that robots can achieve task goals by behaviors similar to the ones of hu-
mans. This has inspired us to utilize recent visual language models, which are
trained on a wide range of human-generated text and images, to produce objects
of interest and reasonable action choices for the agent to execute.

3 Our Idea

3.1 Methods and Intuitions

Leveraging affordance understanding and broad internal knowledge in large mod-
els can increase the efficiency and performance of robot agents by guiding explo-
ration and learning. Our idea is to use Visual-Language Models (VLM) for high-level
planning. We focus on the goal-conditioned learning setting, where we provide the
VLM with a goal image and the current scene image. Conditioned on these im-
ages, we rely on the VLM to identify what object in the scene should be interacted
with to achieve the goal (as well as what action sequence out of a predefined set is
appropriate). The VLM can output the desired object name that can be passed to
a language-conditioned segmentation model to identify the object location in the
camera frame as both a 2D mask and a bounding box. Querying the depth map
uniquely identifies the third dimension, at which point a transformation can be
applied to find the 3D object points in the world/robot frame. The robot acts in
the end-effector space, so the transformed segmentation mask provides low-level
control. However, this mask is still coarse; while VLM may often be able to identify
fine-grained object parts, existing segmentation models fail to correctly segment
beyond the object level. Many objects may only have a small region that affords the
desired interaction. To address this, we learn a Gaussian policy that is initialized
by sampling from the coarse mask. The policy initialized in this way is presumably
already “close” to the desired region, and much more likely to sample high-reward
actions than a policy that does not have this initialization and must start by sam-
pling randomly from the entire space. Inspired by [3], we refine the Gaussian policy
using the Cross-Entropy Method (CEM) for iterative policy updates. The pipeline
is illustrated by 1

Intuitively, VLM can find the object in the scene that is most likely to be interesting
to humans or manipulable to reach the goal. Every action sampled from the seg-
mented object is more likely to give a high reward than from random sampling. We
segment based on the object name text to locate the object in the camera frame,
and through iterative learning using CEM we can refine the mask. The final Gaus-
sian policy can be visualized as a heatmap and interpreted as the correct part with
the desired affordance. The connection to prior work is that the policy is learned
through initialization and constraints from human-driven affordance recognition.
The VLM and segmentation pipeline can substitute the learned affordance models
in prior works and is more generalizable to different scenes, tasks, perspectives,
etc.

3.2 Implementation details

While in theory a library of action primitives can be generated beforehand for the
VLM to choose, we create the action primitives produced by the VLM for our exper-
iments. We implemented the ”turn” primitive as a sequence of pre-defined actions
that reaches a 3D location in the world frame and then performs a ”v” shaped
motion with the end-effector closed to turn the faucet. With this action primitive
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Figure 1: The overview of our pipeline. We utilize VLM to provide action primitive and target
objects. Then off-the-shelf segmentation models (such as LangSAM) are used to segment the
target object in the RGBD image frame. A Gaussian distribution is constructed from within
the object segmentation mask to create locations with higher chances of creating meaningful
explorations. The points are projected as 3D points using the depth information, and the
agent refines the Gaussian with CEM updates guided by the reward of each interaction.

parameterized by its starting location, we utilize CEM with Gaussian distribution to
refine the affordance map for the robot to perform the turn action. The affordance
distributions are generated and learned in the 2D image frame, and the actual 3D
locations for the robot to interact with are projected from the 2D locations using
the camera parameters and depth information of RGBD observations.

We implemented sampling from the segmentation mask and sampling from the
bounding box of the target object. A Gaussian distribution is constructed from a
random location within the mask or bounding box and n locations are sampled
for the agent to perform the action. We then pick m elites who have the highest
episode returns and update the mean using the mean of elites and the variance
using an exponential moving average:

µi = µe

Si = (1− α)Si−1 + αSe

where µ and S are the mean and variance, and α is the EMA coefficient, which
we set to 0.9 in our experiments. Moreover, since the Gaussian distribution’s
initialization may cover an arbitrary portion of the target object, we also em-
ploy an exponentially decaying random exploration. For each iteration i of
the T total iterations, the agent has a probability of 2T−i

T 2 to randomly sam-
ple a location from within the segmentation mask or bounding box for explo-
ration, while the rest of the samples are drawn according to the Gaussian.
We found this approach helps the agent interact with the target object more
uniformly in the beginning and stabilizes the policy learning, and the policy
will eventually depend more on the learned Gaussian which ensures exploita-
tion. Finally, we use the mean of the Gaussian as the evaluation policy.

Figure 2: Faucet initial and goal im-
ages used as visual prompts.

4 Experiments

4.1 VLM extraction

We utilize GPT4-V [4] as the VLM, and ask it
to extract key objects and action primitives on
real-world images using the following prompt
template:
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Prompt:
Given images of the current (first) and goal (second) state, tell me 1) which
object in the scene a robot should interact with to achieve the goal and
2) which action to use from the set {“turn”, “pick up”, ...}. Be succinct,
respond with (object name, action) and nothing else.
GPT-4V Response:
({Object}, {Action})

We test our prompt with images of a real-world kitchen sink 2 with the faucet
being turned between the initial and goal frames. After applying the above prompt
template, the VLM can successfully respond with the tuple (faucet, turn). We carry
out the robot experiment using a simulated faucet-turning environment. Using
the image observation returned by the camera mounted on the robot end-effector,
we employ ”faucet” as the query term for LangSAM [5] to acquire the mask and
bounding box of the faucet. The action ”turn” is then used to achieve the goal.
Note that this pipeline only requires visual observation at the beginning of the
episode.

4.2 Agent and Environment setup

Figure 3: The modified ”Turn-
Faucet” environment with clut-
tering props. The blue dot
demonstrates the location for
the agent to start the ”turn” se-
quence of actions. This 3D loca-
tion is acquired through projec-
tion from a 2D point in the im-
age frame generated by the pol-
icy’s affordance map

The ManiSkill2 benchmark [6] is a collection of ma-
nipulation tasks focusing on low-level control. We
focus on the ”TurnFaucet” environment, which re-
quires a single Franka Emika Panda manipulator
with a parallel gripper to turn on a water faucet.
The environment also features a dense reward func-
tion that encourages 1) reducing the distance be-
tween the gripper and the Faucet, 2) increasing
the angle of the faucet’s handle joint, and 3) in-
creasing the change in the handle joint’s angle com-
pared to the previous step. While our pipeline func-
tions well with the original dense reward, we also
experimented with a ”sparse” reward by removing
the proximity term in the reward function to better
demonstrate the effectiveness of our pipeline; the
proximity term likely provides information similar
to our guided exploration method. Moreover, the
original environment contains an isolated faucet,
making the region for exploration very explicit. We
modified the environment by adding random ob-
jects to simulate a cluttered scene, which is closer
to the real-world setting that we run the visual lan-
guage model on. Object variations are available for

the environments to test the generalizability of our method. We evaluated three
different models of faucets, and we applied random initialization to the locations
of the faucets. An illustration of the modified environment is provided by 3

4.3 Results

We compared our methods against two baselines: 1) Random exploration, where
the agent randomly picks a 3D location in the scene and conducts the turning
action primitive, and 2) Constrained exploration, where the agent picks a location
within a cube with a width of 2 unit in the x,y,z directions that contains the faucet.
Our main result focuses on the ”spare reward” setting with 3 faucet variances for
clear comparison, but we also experimented with the ”dense reward” setting on
one faucet variance for fairness. All methods using sparse reward are trained for
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20 iterations, and for each iteration, 20 locations are sampled for exploration while
10 are selected as elite for CEM updates. For the dense reward setting, 50 samples
are drawn per iteration, while the elite and iteration numbers are the same as
in the sparse setting. We report the average episode return of our method and
the baselines across 3 random seeds, and we also visualize the progression of the
Gaussian policy by visualizing the distribution as heat maps projected in the image
frame.

As shown by 4, our method outperforms the baselines and converges faster. This
confirms our intuition that explicitly guiding the exploration toward areas that are
more likely to be interacted with by humans can improve the sample efficiency
of the robot agent. On the dense setting 5, our method still converges quicker,
but the random agent aided by the proximity return can also eventually achieve
comparable episode returns.

5 Summary

Figure 5: The episode returns under the
dense reward setting. Our method still con-
verges faster than the baseline methods, but
the proximity term of the dense reward also
allows the random agents to achieve similar
performance as our method

To address the challenge of exploration
and learning in large state and action
spaces in robotics and reinforcement
learning, we propose to use human-like
affordance understanding and knowl-
edge to guide agent exploration and in-
teractions. We leverage the large-scale
training and world knowledge of VLM
and language-based open-world seg-
mentation models to provide an “affor-
dance mask” that the policy can sam-
ple and be initialized from. To re-
fine the coarse mask and identify fine-
grained parts with the desired affor-
dances to robustly achieve goals, we
update the affordance-initialized pol-
icy through online interactions. Our
experiments show that affordance-
guided exploration outperforms ran-
dom exploration in both reward and ef-
ficiency. In particular, in the dense set-
ting, where behavior is dominated by the signal coming from the distance reward,
the guided exploration can start with a high reward and start interacting with
the faucet handle almost immediately (within a couple of iterations at 20 samples
each). The random policy moves toward the faucet using the distance reward but is
unable to find the faucet handle within the limited experiment parameters. In the
sparse setting where the reward comes only from the angle of the faucet handle,
the random policy receives no signal through 20 iterations even scaling up to 50
samples/iteration, given the small likelihood of directly sampling a handle point,
and thus receives no learning signal for positive updates. The learning rate decay
further decreases exploration over time, forcing the agent to exploit an effectively
random policy. Using the same experiment parameters, the affordance-guided
agent can find a small region that allows it to effectively move the handle. This is
only possible at this level of efficiency because the policy quickly starts sampling
points from the handle when being constrained to the object mask.
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Figure 4: Plot of episode returns and progression of Gaussians on sparse reward setting.
Our methods outperform the baselines on all variances of the environment. The heatmaps
to the right of each plot show the Gaussian distribution that represents the affordance
learned by the agent after 5,15,20 iterations (from top to bottom). The policy quickly con-
verges to the handles of the faucets, leading to efficient interactions

6 Future Directions

One notable aspect of our method is that the learning (Gaussian policy updates)
is agnostic to task, scene, etc. The pipeline is not trained for specific objects in
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specific environments and thus is presumably generalizable to diverse settings.
Our plan for future work is to set up different tasks and settings and demonstrate
how the open-world capabilities of the affordance pipeline give us this desirable
agnostic behavior. From there, we want to deploy the pipeline to learn in the real
world to test its robustness to real-world variabilities. In addition, we also acknowl-
edge that formulating an effective action primitive may not be trivial, and not all
action primitives can be parameterized only by their starting positions alone, lim-
iting our method to generalize across different tasks. While it is in theory possible
to simplify the action primitives as a sequence of target end-effector poses, this
formulation may require querying the VLM after every simulation step, drastically
increasing computational cost and time of rollout. These limitations also opens up
opportunities for future research.
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