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Abstract— We present a novel zero-shot task-oriented grasp-
ing method leveraging a geometric decomposition of a target
object into shape primitives that we represent in a graph
structure. Our approach employs only the object name and
task along with this graph to engage the commonsense rea-
soning capabilities of large language models to dynamically
assign semantic meaning and subsequently task suitability to
each decomposed part. Through extensive real-world robotic
experiments, we demonstrate that our approach is capable of
identifying the correct part in 92% and successfully lifting the
object in 82% of the tasks we evaluate. Additional videos,
experiments, code, and data are available on our project
website: https://shapegrasp.github.io/.

I. INTRODUCTION

Interacting with novel objects in unstructured environ-
ments, such as households, is an essential skill for robots
operating in the real world. In particular, grasping objects in
a way that facilitates a certain task, task-oriented grasping,
requires a system to not only detect an object but also to
reason over the utility of its parts. For example, when picking
up a hammer with the goal to “hand it over” (see Fig. 2, left),
the robot should grasp the hammer by the head to promote
ease and safety for the human receiving it. Large Language
Models (LLMs) provide the capability of such commonsense
reasoning and can be utilized for task-oriented grasping with
only a minimal set of contextual information, namely the
object’s name and desired task [1], [2].

However, zero-shot task-oriented grasping remains chal-
lenging, particularly since current approaches are computa-
tionally expensive and may require additional information
for high performance, such as object part names [1], [2],
limiting zero-shot performance. Other techniques based on
semantic knowledge graphs [3], [4], [5], shape segmenta-
tion techniques [6], and physics simulators [7] have been
considered. These approaches are limited in their ability to
generalize to unseen objects due to requiring computationally
expensive training. Additionally, LLMs and VLMs have
successfully been applied to the robotics domain [8], [9],
[10], [11], [12], including for task-oriented grasping [2], [13].
In such context, LLMs have been integrated into planning
procedures in various ways, such as providing semantic
knowledge [8] and performing complex reasoning in the
form of an inner monologue [10]. Despite the benefits
of utilizing LLMs and VLMs, which include no need for
additional training and providing commonsense reasoning
capability, naive utilization of LLMs and VLMs still have
limitations stemming from their inherent shortcomings, such
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Fig. 1: The ShapeGrasp Pipeline: Given a target object,
our RGB+D-based approach decomposes the object into
basic convex parts. We propose a heuristic approach to select
an appropriate decomposition that we then convert into a
shape graph, allowing an LLM to utilize its commonsense
reasoning to determine part semantics and task suitability.

as indecisiveness, lack of domain knowledge, hallucination,
and the black-box problem [14]. We address these limitations
by infusing the LLM with a symbolic graph representing a
target object’s geometric composition. The infusion of such
structured knowledge has been shown to be effective in
preventing LLMs from deviating into the realm of fictitious
information, thereby ensuring a connection to factual data
[15], [16], [14], [17] and enhancing reasoning capabilities
for task-oriented grasping.

In this extended abstract, we propose ShapeGrasp, a
robust and efficient task-oriented grasping framework
based on representing a target object’s decomposed
convex parts in a symbolic graph that facilitates shape-
based semantic part reasoning using LLMs, inspired by
the human ability to analyze a novel object’s geometry,
relating it to prior knowledge, and inferring part utilities [18]
to identify a suitable part to grasp for an intended task.

II. SHAPE-BASED GRASPING

ShapeGrasp, our approach g, θ = fSG(I) to zero-
shot task-oriented grasping, utilizes a passive monocular

https://shapegrasp.github.io/
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Fig. 2: Different resulting grasps given our shape-based inference pipeline. Parts in orange-boldface are ultimately grasped.
Green circles and blue lines represent the part-graph decomposition with each entity’s associated attributes.

RGB+D image I ∈ RH×W×C , to predict a task-oriented
grasp location g ∈ R3 and rotation θ ∈ R1 . The function
fSG(. . . ) represents the ShapeGrasp pipeline (visualized
in Figure 1), composed of the following modules: Starting
with a single static RGB+D image, we use Segment Any-
thing Model (SAM) [19] to obtain the object’s segmentation
mask and point cloud. We then employ CoACD [20] in 2D
(from the masked image) and 3D (from the masked point
cloud) mode to decompose the target object into convex
parts. At this stage, we develop an automatic heuristic to
set decomposition thresholds and select between the 2D and
3D modes to identify a decomposition that results in parts
suitable for semantic reasoning (see project website for more
details). Leveraging the resulting decomposition, we present
a novel approach to construct a graph-based representation of
the object using each part’s shape approximation, geometric
attributes, and spatial relationships. We then use an LLM for
multi-step reasoning over this structure, inspired by Chain of
Thought [21], to 1) assign semantic meaning to each part of
the object and 2) reasons over utility of each part to select
the most suitable part to grasp for the task (see Sec. II-B).

A. Structured Visual Object-Graph Representations

After selecting an appropriate decomposition C∗, we
project it back onto the original input image I and create
an object-graph G describing the composition of the target
object. Each decomposed part is represented as a node
in the graph accompanied by attributes derived from the
segmented image. The primary attribute is an approximate
shape primitive, chosen from an isosceles triangle, rectangle,
circle, or ellipse. To select the appropriate shape, we approx-
imate each convex hull with a simplified polygon given a
pre-defined approximation threshold ε. The resulting points
from this simplification dictate the fitted shape as follows:
Isosceles triangles are formed by modifying any three points
to equalize the leg lengths and adjust the base. Rectangles
are formed by finding the rotated rectangle of the minimum
area enclosing part. Circles are classified checking if the
ratio of a part’s area to that of its bounding circle is greater
than 0.9. Ellipses are formed by fitting the part inside a
rectangle (see above) if the fit reduces errors further. Each
part is represented as a node in the graph G with attributes
shape, aspect ratio, angle, centroid, and area calculated from
the masked image. Part color is also included, obtained by
bucketing the RGB color spectrum based on the standard
16 web colors and selecting the most prevalent color. Edges

within graph G are drawn to connect nodes whose convex
parts share boundaries or intersect in the decomposition.

B. Grasp Inference through Shape Reasoning

To determine a task-oriented grasp, we propose to lever-
age the commonsense knowledge encoded in LLMs across
two interaction stages to reason about each part’s semantic
meaning and task utility. We leverage a prompt template that
depends only on the graph G, target object and task. We
utilize TypeChat [22] to ensure the intended output structure.

1) Semantic Part Identification: In the first stage, the
LLM is instructed to reason about the nodes in the graph
and what semantic part (e.g., “handle” and “blade”, for a
knife) each may represent in the target object. To conduct
this reasoning, we first ask for an unstructured, free-form
answer in which the LLM explicitly explains its thoughts.
As a follow-up, the LLM is then tasked to assign a single
semantic label to each graph node in a structured manner.

2) Task-Oriented Part Selection: After the semantic rea-
soning is complete, the LLM is instructed to reason about the
task utility of each part, using the semantics assigned in the
first stage in addition to the graph representation. Similar to
the first stage, this is accomplished in two steps: a free-form
reasoning and explanation stage that the LLM then uses to
assign a final task-oriented suitability score to each node.

C. Selecting a Grasp Pose

Finally, we select the graph node with the highest task-
score. To grasp the selected node, we calculate the 3D
coordinates of the part segment’s centroid using the depth
information in input image I . To consider rotations, we cal-
culate the principle components of the segment in the point
cloud and orient the gripper along the largest component.

III. EXPERIMENTS

We evaluate our approach in real-world experiments and
demonstrate its effectiveness in grasping 38 household ob-
jects covering 12 general categories and 49 tasks, inspired by
the LERF-TOGO [2] dataset (see project page). Section III-A
demonstrates our approach on a real-world robotic platform
and compares it against state-of-the-art baselines followed
by additional qualitative experiments. All experiments are
conducted with a Kinova Jaco robotic arm equipped with
a three-finger gripper and coupled with a fixed Oak-D SR
passive stereo-depth camera for RGB and depth perception.

We employ three metrics to evaluate our approach
ShapeGrasp: Part Identification (Part ID) measures the



Model Part ID Part Sel. LS Time

1 GraspGPT [23] N/A 0.37 0.31 150
2 GPT4-Vision [24] N/A 0.82 0.73 20

3 ShapeGrasp (Starling) 0.54 (0.63) 0.65 0.57 25
4 ShapeGrasp (GPT-4) 0.84 (0.90) 0.92 0.82 30

TABLE I: Results on ShapeGrasp compared to GraspGPT
and GPT4-V baselines. “Part ID” is measured across all
parts (and across only target parts) and “Time” is the typical
inference time in seconds for each method.

accuracy of the semantic label assigned to the object parts.
Part Selection (Part Sel.) quantifies the proficiency of our
model to select the correct part to grasp for the task. Lift
Success (LS) indicates the percentage of objects successfully
lifted at the correct part for the given task.

A. Zero-Shot Task-Oriented Grasping

Results for ShapeGrasp on the evaluated metrics are
shown in Table I. We employ two baselines for comparison
against ShapeGrasp: GraspGPT [23], which is a current
state-of-the-art approach for zero-shot task-oriented grasping
and GPT4-V [24], a foundation model trained with internet-
scale data with visual input modality, prompted with lan-
guage instructions to select the correct task-oriented part.

Our empirical findings indicate a significant performance
advantage of our method over GraspGPT [23] (55% and
51% for the “Part Selection” and “Lift Success” metrics,
respectively; see rows 1 and 4 in Table I), underscoring the
efficacy of our structured graph in conjunction with multi-
step LLM reasoning. We note that GraspGPT depends on
GraspNet [13] for grasp sampling, which may be inaccurate
or fail on certain objects when the depth quality is noisy
or poor, which may occur due to our static monocular
depth camera. While GraspGPT is limited to tasks and
objects related to previously known concepts, ShapeGrasp
demonstrates robustness to the same noisy depth inputs,
while featuring zero-shot and being more lightweight than
GraspGPT (see “Time” in Table I).

An important hypothesis that motivates our image-to-
graph construction is that directly processing object part fea-
tures and spatial relationships and providing this information
in a structured way for LLM reasoning is more robust and
performant than relying on VLMs for end-to-end reasoning.
Though VLMs are considerably larger and more expensive
models, performance on low-level features and relationships
within parts of an object image may be unreliable and
subject to hallucinations [25]. To directly compare our graph-
construction and reasoning pipeline to a VLM, we establish
a privileged GPT4-Vision baseline that directly uses the
same heuristic-selected object segmentations to select a part
to grasp. This baseline is grounded by coloring each part
and assigning them integer index labels for clarity. We
confirm GPT4-Vision’s capability to interpret segmented and
grounded input object images through a series of questions
and human-verified responses. We use the same method
to determine the grasp pose for the GPT4-Vision selected

part to ensure comparability. Our method shows significant
success rate gains over GPT4-Vision, by 10% and 9% on the
evaluation metrics (see rows 2 and 4 in Table I).

It is interesting to note that while ShapeGrasp using
the heuristic decomposition achieves 0.92% “Part Selection”
accuracy, the performance drops to 0.86% and 0.73% when
2D- and 3D-only decompositions are respectively used. This
result demonstrates the efficacy of the heuristic and the
flexibility of ShapeGrasp to dynamically adapt to settings
where depth information may be low quality or unsuitable,
such as with concave, reflective, or transparent surfaces,
where the 2D pipeline excels due to the sole reliance on
RGB data. The complexity and prevalent noise in real-world
settings often necessitates a reliance on the 2D mode for
accuracy and robustness, while leveraging depth in the 3D
mode when deemed reliable and beneficial by the heuristic.

We further test the modularity of ShapeGrasp by evalu-
ating the full pipeline using Starling [26], a much smaller and
more efficient open-source LLM, as the inference backend
instead of GPT-4. Performance across all metrics, while
lower than the larger and more powerful GPT-4, remains
meaningful and higher than the GraspGPT [23] baseline.

Qualitative Results. The flexibility and generalizability
of ShapeGrasp allow us to explore more complex interac-
tions by incorporating additional object and robot attributes.
For example, Fig. 2 shows how LLM semantic reasoning
over our shape graph enables effective execution of the
“hand over” task. As the LLM is able to identify the part
corresponding to an object’s “handle”, it can prioritize that
part for the human in the “hand over” interaction. Additional
attributes can also be included in an object-specific way;
while both the “mug” and the “soldering iron” are given the
attribute of being “hot”, the task-oriented reasoning stage can
make the commonsense inference that the level of heat and
risk exhibited by these two objects differ dramatically. For
the “hand over” task, while the mug is grasped by the hot
body, which “minimizes the risk of spilling hot liquid and
ensures a comfortable handover”, the soldering iron is still
grasped by the handle, which “positions the hot tip away
from both the robot and the human” (see Fig. 2).

IV. CONCLUSION

In this work, we present ShapeGrasp, a novel approach
that represents an object’s convex decomposition as a graph
of basic shapes, allowing an LLM to effectively perform fine-
grained semantic and task suitability reasoning over each
part to identify a task-oriented grasp. Through extensive
experiments on real-world hardware, we demonstrated that
our approach can efficiently utilize a single, static RGB+D
camera image for zero-shot task-oriented grasping and out-
perform current state-of-the-art approaches.
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