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Introduction

•Control a robotic arm to throw an object with precision to a predetermined location
• Throwing objects precisely is a dynamic human skill that can be useful in a variety of

robotic tasks
•We solve a non-linear optimization problem for the arm’s trajectory and release point
•We show accurate throws in a bomb dropper and 2-D arm thrower example

Background

•Analytical Models
◦ Optimizing control by solving an optimization problem based on approximating dynamics
◦More stability and mathematical guarantees
◦ Assumes physical properties
◦ Computational expensive
◦ Depends on accuracy of model and dynamics
• Learning Models
◦ Ignoring low-level dynamics and directly optimize for task-level success signal
◦ Can scale to higher dimensional settings
◦More data requirements
◦ Physical properties might be difficult to approximate

Toy Problem - Bomb Dropper

• State
x =

[
x ẋ y ẏ

]T
•Dynamic

ẋ = f (x, u) =


[
ẋ u

m ẏ 0
]

t < T1[
ẋ 0 ẏ −g

]
t ≥ T1

•Non-linear Optimization Problem

min
x1:N1+N2,u1:N1,∆t1,∆t2

J
(
x1:N1+N2, u1:N1

)
= 1

2

N1∑
i=1

uT
i Rui ∗∆t1

st x1 = xic

xN1+N2[1] = goalx
xN1+N2[3] = goaly
xk+1 = f1 (xk, uk, ∆t1) for k = 1, · · · , N1
xk+1 = f2 (xk, uk, ∆t2) for k = N1 + 1, · · ·N1 + N2
∆t1 ∈ [0.01, 0.5]
∆t2 ∈ [0.01, 0.5]

• Solution

• Trajectory Animation

2-D Arm Thrower
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•Optimization Problem Formulation
We modified the architecture of the bomb dropper for the arm thrower to reduce
unnecessary computation for the solver. The discrete states of the optimization
problem are as follows:
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In the above diagram, xA represent the arm’s state and xB represent the ball’s state.
The arm will carry the ball for the first N1 steps of ∆t1, where it will release the ball
to create ball state at release xB

1 . The arm will continue to slow down for N2 steps of
∆t2, and the ball will travel one step of duration T2 until it hits the target.

When the arm is carrying the ball, the ball’s state is determined by the arm state. We
model this dependency as g that maps arm state to ball state. The ball will influence
the arm’s dynamics with its mass, and we model the dynamics with/without the ball
as f1, f2. fg represents ball’s freefall dynamics.

We define the arm state as joint angles and velocities, xA = [θ1, θ2, θ̇1, θ̇2], and ball
state(when its flying) as XY position and velocity, xB = [px, py, ṗx, ṗy]. The control
input u is the torque at joint 1, 2. We form the optimization problem as:

min
xA

1:N1+N2
,xB

1,T2
,u1:(N1+N2−1),∆t1,T2

J
(

xA, xB, u
)

= 1
2

N1∑
i=1

uT
i Rui ∗∆t1 + 1

2

N2−1∑
i=N1+1

uT
i Rui ∗∆t2

st xA
1 = xic

xA
k+1 = f1

(
xA

k , uk, ∆t1
)

for k = 1, · · · , N1

xA
k+1 = f2

(
xA

k , uk, ∆t2
)

for k = N1 + 1, · · ·N1 + N2

xB
1 = g(xA

N1)
xB

T2 = fg(xB
1 , T2)

xB
T2[1] = goalx

xB
T2[2] = goaly

∆t1 ∈ [0.01, 0.5]
T2 ∈ [0.1, 10.0]

Where,

f1,2 = rk4(f̃1,2, ∆t1,2), f̃1,2 = M1,2(θ)−1(u− C1,2(θ, θ̇)−G1,2(θ))
represent the arm dynamics with/without the ball. The functions M, C, G of the arm
with mass m1, m2 can be calculated as:

M(θ) =
[
(m1 + m2)l21 + m2l

2
2 + 2m2l1l2 cos(θ2) m2l

2
2 + m2l1l2 cos(θ2)

m2l
2
2 + 2ml1l2 cos(θ2) m2l

2
2

]

C(θ, θ̇) =
([

0 −2m2l1l2 sin(θ2) −m2l1l2 sin(θ2)
m2l1l2 sin(θ2) 0 0

]) θ̇2
1

θ̇1θ̇2
θ̇2

2



G(θ) = −g

[
(m1 + m2)l1 cos(θ1) + m2l2 cos(θ1 + θ2)

m2l2 cos(θ1 + θ2)

]

When the arm is not carrying the ball, we can use m1, m2 as above to calculate
the dynamics. When the arm is carrying the ball, we simply update

m2← m2 + mb

For the arm-ball state constraint, we can differentiate the kinematics of the arm
and get: 

px

py

ṗx

ṗy

 =


l1 cos(θ1) + l2 cos(θ1 + θ2)
l1 sin(θ1) + l2 sin(θ1 + θ2)

−l1 sin(θ1)θ̇1 − l2 sin(θ1 + θ2)(θ̇1 + θ̇2)
l1 cos(θ1)θ̇1 + l2 cos(θ1 + θ2)(θ̇1 + θ̇2)


Since the free-fall dynamics is linear, we can integrate it perfectly:

fg(xB
1 , T2) = [px + T2ṗx, py + T2ṗy −

g

2
T 2

2 , ṗx, ṗy − T2g]

We solved the problem with Ipopt with N1 = N2 = 10 steps and R = 0.01I2.

•Solution and Animation

Conclusion and Next Steps

•We show how we solve the non-linear optimization problem of throwing an object to
hit a target in a 1D bomb drop and 2D arm thrower problem with IPOPT
•However, the performance/result is highly dependent on the initial condition.

Therefore, we are planning to provide a valid reference trajectory for stability in
convergence
•Next steps for the final report include engineering this approach into a more complex

7DOF arm simulator
• Potentially expand the goal pose to consider orientation in addition to location
•Consider more complex throwing objects, such as an axe or knife

•Maybe applying Iterative Learning Control (ILC) to solve the mismatch problem
when changing the simulation environment


