Precise Throwing Control

Yuchen Zhang, Yunchao Yao, Samuel Li, Yihan Ruan \{yuchenz7, yunchaoy, swli, yihanr\}@andrew.cmu.edu

Introduction

- Control a robotic arm to throw an object with precision to a predetermined location
- Throwing objects precisely is a dynamic human skill that can be useful in a variety of robotic tasks
- We solve a non-linear optimization problem for the arm's trajectory and release point
- We show accurate throws in a bomb dropper and 2-D arm thrower example

Background

- Analytical Models

Optimizing control by solving an optimization problem based on approximating dynamics More stability and mathematical guarantees

- Assumes physical properties

Computational expensive
Depends on accuracy of model and dynamics

- Learning Models

Ignoring low-level dynamics and directly optimize for task-level success signal
More data to higher dimensional settings
\circ Physical properties might be difficult to approximate
Toy Problem - Bomb Dropper

- State

$$
\mathbf{x}=\left[\begin{array}{lll}
x & \dot{x} & y \\
\dot{y}
\end{array}\right]^{T}
$$

- Dynamic

$$
\dot{\mathbf{x}}=f(\mathbf{x}, u)=\left\{\begin{array}{ccc}
{\left[\begin{array}{ccc}
\dot{x} & \frac{u}{m} & y \\
\hline & 0
\end{array}\right]} & t<T_{1} \\
\dot{x} & 0 & \dot{y}
\end{array}-g\right] \begin{array}{ll}
& t \geq T_{1}
\end{array}
$$

- Non-linear Optimization Problem

$$
\begin{array}{ll}
\min _{x_{1: N}+N_{1}+N_{2}, u_{1: N}, \Delta N_{1}, \Delta t_{1}}{ }^{J}\left(x_{1: N_{1}+N_{2},}, u_{1: N_{1}}\right)=\frac{1}{2} \sum_{i=1}^{N_{1}} u_{i}^{T} R u_{i} * \Delta t_{1} \\
& \text { st } \\
x_{1}=x_{i c} \\
& x_{N_{1}+N_{2}}[1]=\text { goal }_{x} \\
& x_{N_{1}+N_{2}[3]=\text { goal }_{y}} \\
x_{k+1}=f_{1}\left(x_{k}, u_{k}, \Delta t_{1}\right) & \text { for } k=1, \cdots, N_{1} \\
& x_{k+1}=f_{2}\left(x_{k}, u_{k}, \Delta t_{2}\right) \quad \text { for } k=N_{1}+1, \cdots N_{1}+N_{2} \\
& \Delta t_{1} \in[0.01,0.5] \\
& \Delta t_{2} \in[0.01,0.5]
\end{array}
$$

- Solution

- Trajectory Animation

2-D Arm Thrower

$$
m_{2}+\left.m_{b} \xlongequal[l_{l_{1}}]{\theta_{1}, u_{1}}\right|_{m_{1}} ^{x_{b} l_{2}}
$$

$m_{2} \wedge_{\theta_{2}, u_{2}}$ $Y_{m_{1}}$

Optimization Problem Formulation

We modified the architecture of the bomb dropper for the arm thrower to reduce unnecessary computation for the solver. The discrete states of the optimization problem are as follows:

In the above diagram, x^{A} represent the arm's state and x^{B} represent the ball's state The arm will carry the ball for the first N_{1} steps of Δt_{1}, where it will release the bal to create ball state at release x_{1}^{B}. The arm will continue to slow down for N_{2} steps of Δt_{2}, and the ball will travel one step of duration T_{2} until it hits the target.
When the arm is carrying the ball, the ball's state is determined by the arm state. We model this dependency as g that maps arm state to ball state. The ball will influence model this dependency as g that maps arm state to ball state. The ball will influence as f_{1}, f_{2}. f_{g} represents ball's freefall dynamics.

We define the arm state as joint angles and velocities, $x^{A}=\left[\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \dot{\theta}_{2}\right]$, and ball state(when its flying) as XY position and velocity, $x^{B}=\left[p_{x}, p_{y}, \dot{p}_{x}, \dot{p}_{y}\right]$. The control input u is the torque at joint 1,2 . We form the optimization problem as:

$$
\left.\begin{array}{rl}
\min _{x_{1: N}^{A}}^{A}+N_{1}+N_{2}, x_{1}^{B}, T_{2}, u_{1}\left(N_{1}+N_{2}-1\right), \Delta t_{1}, T_{2}
\end{array}{ }^{J}\left(x^{A}, x^{B}, u\right)=\frac{1}{2} \sum_{i=1}^{N_{1}} u_{i}^{T} R u_{i} * \Delta t_{1}+\frac{1}{2} \sum_{i=N_{1}+1}^{N_{2}-1} u_{i}^{T} R u_{i} * \Delta t_{2}\right)
$$

Where,

$$
f_{1,2}=\operatorname{rk4}\left(\tilde{f}_{1,2}, \Delta t_{1,2}\right), \quad \tilde{f}_{1,2}=M_{1,2}(\theta)^{-1}\left(u-C_{1,2}(\theta, \dot{\theta})-G_{1,2}(\theta)\right)
$$

represent the arm dynamics with/without the ball. The functions M, C, G of the arm with mass m_{1}, m_{2} can be calculated as

$$
M(\theta)=\left[\begin{array}{cc}
\left(m_{1}+m_{2}\right) l_{1}^{2}+m_{2} l_{2}^{2}+2 m_{2} l_{1} l_{2} \cos \left(\theta_{2}\right) & m_{2} l_{2}^{2}+m_{2} l_{1} l_{2} \cos \left(\theta_{2}\right) \\
m_{2} l_{2}^{2}+2 m_{1} l_{2} \cos \left(\theta_{2}\right) & m_{2} l_{2}^{2}
\end{array}\right]
$$

$$
\begin{gathered}
C(\theta, \dot{\theta})=\left(\left[\begin{array}{ccc}
0 & -2 m_{2} l_{1} l_{2} \sin \left(\theta_{2}\right) & -m_{2} l_{1} l_{2} \sin \left(\theta_{2}\right) \\
m_{2} l_{1} l_{2} \sin \left(\theta_{2}\right) & 0 & 0
\end{array}\right]\right)\left[\begin{array}{c}
\dot{\theta}_{1}^{2} \\
\dot{\theta}_{1} \dot{\theta}_{2} \\
\dot{\theta}_{2}^{2}
\end{array}\right] \\
G(\theta)=-g\left[\begin{array}{c}
\left(m_{1}+m_{2}\right) l_{1} \cos \left(\theta_{1}\right)+m_{2} l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
m_{2} l_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]
\end{gathered}
$$

When the arm is not carrying the ball, we can use m_{1}, m_{2} as above to calculate he dynamics. When the arm is carrying the ball, we simply update

$$
m_{2} \leftarrow m_{2}+m_{b}
$$

or the arm-ball state constraint, we can differentiate the kinematics of the arm and get:
$\left[\begin{array}{c}p_{x} \\ p_{y} \\ \dot{p}_{x} \\ \dot{p}_{y}\end{array}\right]=\left[\begin{array}{c}l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\ l_{1} \sin \left(\theta_{1}\right)+l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\ -l_{1} \sin \left(\theta_{1}\right) \dot{\theta}_{1}-l_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\ l_{1} \cos \left(\theta_{1}\right) \dot{\theta}_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)\end{array}\right]$

Since the free-fall dynamics is linear, we can integrate it perfectly:

$$
f_{g}\left(x_{1}^{B}, T_{2}\right)=\left[p_{x}+T_{2} \dot{p}_{x}, \quad p_{y}+T_{2} \dot{p}_{y}-\frac{g}{2} T_{2}^{2}, \quad \dot{p}_{x}, \quad \dot{p}_{y}-T_{2} g\right]
$$

We solved the problem with lpopt with $N_{1}=N_{2}=10$ steps and $R=0.01 I_{2}$

Solution and Animation

Conclusion and Next Steps

- We show how we solve the non-linear optimization problem of throwing an object to hit a target in a 1D bomb drop and 2D arm thrower problem with IPOPT
However, the performance/result is highly dependent on the initial condition. Therefore, we are planning to provide a valid reference trajectory for stability in convergence
- Next steps for the final report include engineering this approach into a more complex 7DOF arm simulator
- Potentially expand the goal pose to consider orientation in addition to location
- Consider more complex throwing objects, such as an axe or knife

- Maybe applying Iterative Learning Control (ILC) to solve the mismatch problem when changing the simulation environment

